COMPUTATION OF LINEAR RANK-WIDTH Keywords: linear rank-width; rank-decomposition; path-decomposition; vertex-minor Internship at Limos, Clermont-Ferrand, supervised by
نویسنده
چکیده
(1) It is equivalent to clique-width, a complexity measure introduced by Courcelle et al. [4], that generalises the well-known complexity measure tree-width introduced by Robertson and Seymour in their graph minors series. (2) It is algorithmically more interesting than clique-width because we can recognise in polynomial time graphs of rank-width at most k (for fixed k) (3) It shares with tree-width many structural properties (its is for instance related to the theory of matroids and is related to the vertexminor relation [6]). (4) . . .
منابع مشابه
A Note on Graphs of Linear Rank-Width 1
We prove that a connected graph has linear rank-width 1 if and only if it is a distance-hereditary graph and its split decomposition tree is a path. An immediate consequence is that one can decide in linear time whether a graph has linear rank-width at most 1, and give an obstruction if not. Other immediate consequences are several characterisations of graphs of linear rankwidth 1. In particula...
متن کاملGraphs of Bounded Rank-width
We define rank-width of graphs to investigate clique-width. Rank-width is a complexity measure of decomposing a graph in a kind of tree-structure, called a rankdecomposition. We show that graphs have bounded rank-width if and only if they have bounded clique-width. It is unknown how to recognize graphs of clique-width at most k for fixed k > 3 in polynomial time. However, we find an algorithm r...
متن کاملLinear rank-width of distance-hereditary graphs II. Vertex-minor obstructions
In the companion paper [Linear rank-width of distance-hereditary graphs I. A polynomialtime algorithm, Algorithmica 78(1):342–377, 2017], we presented a characterization of the linear rank-width of distance-hereditary graphs, from which we derived an algorithm to compute it in polynomial time. In this paper, we investigate structural properties of distance-hereditary graphs based on this charac...
متن کاملAn Upper Bound on the Size of Obstructions for Bounded Linear Rank-Width
We provide a doubly exponential upper bound in p on the size of forbidden pivot-minors for symmetric or skew-symmetric matrices over a fixed finite field F of linear rank-width at most p. As a corollary, we obtain a doubly exponential upper bound in p on the size of forbidden vertex-minors for graphs of linear rank-width at most p. This solves an open question raised by Jeong, Kwon, and Oum [Ex...
متن کاملRank-Width and Well-Quasi-Ordering
Robertson and Seymour (1990) proved that graphs of bounded tree-width are well-quasi-ordered by the graph minor relation. By extending their arguments, Geelen, Gerards, and Whittle (2002) proved that binary matroids of bounded branch-width are well-quasi-ordered by the matroid minor relation. We prove another theorem of this kind in terms of rank-width and vertex-minors. For a graph G = (V,E) a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013